物体检测在计算机视觉中取得了巨大的进步。具有外观降级的小物体检测是一个突出的挑战,特别是对于鸟瞰观察。为了收集足够的阳性/阴性样本进行启发式训练,大多数物体探测器预设区域锚,以便将交叉联盟(iou)计算在地面判处符号数据上。在这种情况下,小物体经常被遗弃或误标定。在本文中,我们提出了一种有效的动态增强锚(DEA)网络,用于构建新颖的训练样本发生器。与其他最先进的技术不同,所提出的网络利用样品鉴别器来实现基于锚的单元和无锚单元之间的交互式样本筛选,以产生符合资格的样本。此外,通过基于保守的基于锚的推理方案的多任务联合训练增强了所提出的模型的性能,同时降低计算复杂性。所提出的方案支持定向和水平对象检测任务。对两个具有挑战性的空中基准(即,DotA和HRSC2016)的广泛实验表明,我们的方法以适度推理速度和用于训练的计算开销的准确性实现最先进的性能。在DotA上,我们的DEA-NET与ROI变压器的基线集成了0.40%平均平均精度(MAP)的先进方法,以便用较弱的骨干网(Resnet-101 VS Resnet-152)和3.08%平均 - 平均精度(MAP),具有相同骨干网的水平对象检测。此外,我们的DEA网与重新排列的基线一体化实现最先进的性能80.37%。在HRSC2016上,它仅使用3个水平锚点超过1.1%的最佳型号。
translated by 谷歌翻译
Artificial intelligence methods including deep neural networks (DNN) can provide rapid molecular classification of tumors from routine histology with accuracy that matches or exceeds human pathologists. Discerning how neural networks make their predictions remains a significant challenge, but explainability tools help provide insights into what models have learned when corresponding histologic features are poorly defined. Here, we present a method for improving explainability of DNN models using synthetic histology generated by a conditional generative adversarial network (cGAN). We show that cGANs generate high-quality synthetic histology images that can be leveraged for explaining DNN models trained to classify molecularly-subtyped tumors, exposing histologic features associated with molecular state. Fine-tuning synthetic histology through class and layer blending illustrates nuanced morphologic differences between tumor subtypes. Finally, we demonstrate the use of synthetic histology for augmenting pathologist-in-training education, showing that these intuitive visualizations can reinforce and improve understanding of histologic manifestations of tumor biology.
translated by 谷歌翻译
目标。借助(子)毫米观测值的大量分子发射数据和詹姆斯·韦伯(James Webb)空间望远镜红外光谱,访问原磁盘的化学成分的快进模型至关重要。方法。我们使用了热化学建模代码来生成各种多样的原行星磁盘模型。我们训练了一个最初的邻居(KNN)回归剂,以立即预测其他磁盘模型的化学反应。结果。我们表明,由于所采用的原行业磁盘模型中局部物理条件之间的相关性,可以仅使用一小部分物理条件来准确地重现化学反应。我们讨论此方法的不确定性和局限性。结论。所提出的方法可用于对线排放数据的贝叶斯拟合,以从观测值中检索磁盘属性。我们提出了在其他磁盘化学模型集上再现相同方法的管道。
translated by 谷歌翻译
我们根据CC的4.0许可证lib -sibgmu(大学图书馆流通数据集)为广泛的研究社区开放,并在此数据集中为推荐系统提供基准的主要算法。对于由矢量化器组成的推荐体系结构,将借入的书籍的历史转变为矢量,而基于邻里的推荐人则分别培训,我们表明,将FastText模型用作矢量器将提供竞争成果。
translated by 谷歌翻译
逆源问题对于声学,地球物理学,非破坏性测试等的许多应用是至关重要的。传统成像方法受到分辨率极限的影响,防止源的区别比发射的波长小于发射的波长。在这项工作中,我们提出了一种基于物理信息的神经网络来解决源重新关注问题的方法,构建了一个新颖的损失项,该损失术语促进了网络的超解决能力,并基于波传播的物理。我们证明了在二维矩形波导中通过沿垂直横截面的波场记录的测量值进行成像的设置中的方法。结果表明,即使将彼此靠近时,该方法的能力也可以高精度近似于源的位置。
translated by 谷歌翻译
这项调查旨在全面概述用户与推荐系统之间的相互作用和M&S应用程序之间的相互作用的最新趋势(M&S),以改善工业推荐引擎的性能。我们从实施模拟器的框架开发的动机开始,以及它们用于培训和测试不同类型(包括强化学习)的推荐系统的使用。此外,我们根据现有模拟器的功能,认可和工业有效性提供了新的一致分类,并总结了研究文献中发现的模拟器。除其他事情外,我们还讨论了模拟器的构建块:合成数据(用户,项目,用户项目响应)的生成,用于模拟质量评估的方法和数据集(包括监视的方法)和/或关闭可能的模拟到现实差距),以及用于汇总实验仿真结果的方法。最后,这项调查考虑了该领域的新主题和开放问题。
translated by 谷歌翻译
具有动量的迷你批次SGD是学习大型预测模型的基本算法。在本文中,我们开发了一个新的分析框架,以分析不同动量和批次大小的线性模型的迷你批次SGD。我们的关键思想是用其生成函数来描述损耗值序列,可以以紧凑的形式写出,假设模型权重的第二矩对角近似。通过分析这种生成功能,我们得出了有关收敛条件,模型相结构和最佳学习设置的各种结论。作为几个示例,我们表明1)优化轨迹通常可以从“信号主导”转换为“噪声主导”阶段,以分析性预测的时间尺度; 2)在“信号主导”(但不是“以噪声为主导”的)阶段中,有利于选择较大的有效学习率,但是对于任何有限的批次大小,其值必须受到限制,以避免发散; 3)可以在负动量下实现最佳收敛速率。我们通过对MNIST和合成问题进行广泛的实验来验证我们的理论预测,并找到良好的定量一致性。
translated by 谷歌翻译
生成的对抗网络最近在神经声音中表现出了出色的表现,表现优于最佳自动回归和基于流动的模型。在本文中,我们表明这种成功可以扩展到有条件音频的其他任务。特别是,在HIFI Vocoders的基础上,我们为带宽扩展和语音增强的新型HIFI ++一般框架提出了新颖的一般框架。我们表明,通过改进的生成器体系结构和简化的多歧视培训,HIFI ++在这些任务中的最先进的情况下表现更好或与之相提并论,同时花费大量的计算资源。通过一系列广泛的实验,我们的方法的有效性得到了验证。
translated by 谷歌翻译
光酸产生剂(PAG)是在暴露于光线时释放酸($ H ^ + $离子)的化合物。这些化合物是用于制造半导体逻辑和存储芯片的光刻工艺的关键组分。半导体需求的指数增加突出了发现新型光酸发生器的需求。虽然De Novo分子设计使用深度生成模型被广泛用于药物发现和材料设计,但其在创建新颖的光酸发电机的应用构成了几个独特的挑战,例如缺乏房地产标签。在本文中,我们突出了这些挑战,并提出了一种生成的建模方法,该方法利用预先训练的深度自动化器和循环技术的条件生成。在主题专家的帮助下评估了拟议方法的有效性,表明在创建新型光酸生成器之外的应用方法的承诺。
translated by 谷歌翻译
我们更新了更早提出的系统描述和评估抽象环境研究过程的方法。我们不会模拟任何生物学认知机制,并将系统考虑作为配备有信息处理器的代理(或一组这样的代理),这在环境中移动了移动,消耗环境提供的信息,并提供了下一个移动(因此,该过程被认为是游戏)。系统在未知环境中移动,并应识别位于其中的新对象。在这种情况下,系统应根据需要构建可见的东西的全面图像并在必要时记住它们(并且还应该选择当前目标集)。这里的主要问题是对象识别,以及游戏中的信息奖励评级。因此,论文的主要新颖性是一种评估对象的视觉信息量作为奖励的新方法。在这样的系统中,我们建议使用最微量预先训练的神经网络负责识别:首先,我们仅培训网络仅用于Biederman Geors(几何原语)。乔治以编程方式生成,我们证明这种训练有素的网络非常良好地识别真实物体中的巨石。我们还提供从环境中获得的Geon方案(图像中的Geon组合)和将它们存储在数据库中的Geon方案(GeOn组合)生成新对象。在这种情况下,我们没有获得有关对象的新信息(即,我们的奖励是最大的,因此我们停止获得这种新的方案时的游戏和对象认知过程停止)。这些方案是从与对象连接的兆位生成的。在可能已知的项目的情况下,当我们对任何对象的检测不确定性没有更多的检测不确定性时,信息奖励是最大的。
translated by 谷歌翻译